EMPOWERING INFORMATION PROFESSIONALS THROUGH BEST PRACTICE – TECHNOLOGY COMPETENCY

LIANZA Conference 2011, Wellington
1 November 2011
Sarah-Jane Saravani
Learning Hub Manager
sarah-jane.saravani@wintec.ac.nz

Dr. John Clayton
Emerging Technologies Centre Manager
john.clayton@wintec.ac.nz
Activities

- What does “Best Practice” mean?
- Overview of Benchmarking and Reflective Frameworks
- Benchmarking in Action: a Wintec Experience: the eLearning Maturity Model
- Can we identify the “10 Top Tips” for Technology Competency?
- Classifying the “10 Top Tips” : Using eMM to classify tips
- Feedback and Consolidation
- Publication of the 10 Top Tips for Technology
BEST PRACTICE
Your Thoughts?

Best Practice is:

Overview
• Self-explanatory: An annoyingly-vague term: Currently recognised as being the best way of doing something: Guidelines

To be useful they need to be
• Based on evidence: Acknowledged by industry/profession: Things that worked well elsewhere: Tested, effective and validated: Meet user needs: Ways of doing things that have been proven to be most effective

To apply we should
• Ensure lecturers are competent in using e-resources/tools: Provide support in a multiple ways, i.e. not just a manual:
Benchmarking and Reflective Frameworks
Reflection

Premise

Deep-learning is dependent on individuals making meaning of their experiences through ongoing reflection.
Kolb: Reflective Cycle

Concrete Experience
(doing / having an experience)

Active Experimentation
(planning / trying out what you have learned)

Reflective Observation
(reviewing / reflecting on the experience)

Abstract Conceptualisation
(concluding / learning from the experience)
Mitigating Risk: Benchmarking

In reflecting on an individual or institution’s “Capability” a clear set of measurable indicators (satisfaction, physical environment, competencies or support provided) can be identified to measure

– (a) an institution’s performance against others in the same sector, or

– (b) the institution’s performance in achieving their identified objectives.
Caution

• The results obtained from benchmarking measures can often be **misused**,

 – *using the results to create competitive league tables,*
 – *comparing learner competencies across organisational sectors.*

• Therefore, benchmarking is often treated with suspicion by leaders.
Self-Review Framework

• Frameworks are based on “standards”, an example would be the e-Learning Maturity Model (eMM) developed by Stephen Marshall at Victoria University.

• The eMM includes categories, dimensions and practices

 – **Categories**: identify the “processes” that support ICT development

 – **Dimensions**: Dimensions serve to break down the processes into examinable aspects

 – **Practices**: These serve to measure the institution’s actual practices
The diagram illustrates the relationship between different process categories and dimensions, with a maturity scale ranging from "Immature" to "Mature". The categories include Evaluation, Assessment, Development, Curriculum, Support, Pedagogy, and Organisation. The dimensions are Delivery, Planning, Definition, Management, and Optimisation. The color gradient indicates the level of maturity, with darker shades representing higher maturity. The diagonal line suggests a progression from lower to higher maturity levels across the dimensions.
Wintec Experience

<table>
<thead>
<tr>
<th>Support</th>
<th>Wintec 2010</th>
<th></th>
<th></th>
<th></th>
<th>Wintec 2011</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S1. Students are provided with technical assistance when engaging in e-learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2. Students are provided with library facilities when engaging in e-learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3. Student enquiries, questions and complaints are collected and managed formally</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4. Students are provided with personal and learning support services when engaging in e-learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S5. Teaching staff are provided with e-learning pedagogical support and professional development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6. Teaching staff are provided with technical support in using digital information created by students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Student Technology Competency

• Based on 2010 eMM report on student technology competencies at Wintec
• Pilot run in 2011
• Library/IT Student Helpdesk project
• Evaluation of staff and student satisfaction based on eMM
Individual

Step 1
Participants are asked to reflect on their current practice using The CAT.

Step 2
Their responses are aggregated to provide a “pictorial carpet” illustrating their capability in open, flexible, and networked learning.

Step 3
They can now use this pictorial carpet to identify their strengths and areas of potential improvement.

- Competent, confident and capable in this aspect
- Has a degree of competence and confidence in this aspect
- Needs to acquire competence and confidence in this aspect

Building a stronger community through education, research and career development
Technology Competencies
Ten Top Tips
Can we Classify?

Based on the eMM model, including

- Learning
- Development
- Support
- Evaluation
- Organisation
Publication of the 10 Top Tips for Technology Competency

1. Technical competency (demonstrated) is a condition of entry
2. Information literacy, including technology competency, is an integrated component of studies
3. Ensure a reason to learn – incentives that fit the context
4. Have realistic expectations of learners
5. Reduce barriers to learning
6. Provide practical learning opportunities
7. Manage information using online tools, e.g. iGoogle
8. Include basic computer literacy – Word, Excel, PowerPoint
9. Be mindful of time pressures on learners
10. Provide just-in-time instruction, including short video tutorials, e.g. YouTube